Previously Funded Project

Manipulating the selective activation of olfactory ensheathing cells for the repair of injured spinal cord

Working WithGriffith University
Lead ResearcherJames St John
PCSRF funding period2015
Total Funds Committed$50,000

In 2015 PCSRF funded this exciting project at the Griffith Institute for Drug Discovery (GRIDD), Griffith University under the supervision of project leader Associate Professor James St John.

A recent international trial has shown that olfactory glia can restore some function in paralysed humans. These specialised cells found in the nose, have great potential for repairing the spinal cord. Exciting results from the trial have shown that there is now a real chance of developing a therapy for humans. To make the therapy more effective it now needs to be improved.

The team have discovered that the natural product curcumin can potently stimulate the activity of the olfactory glia. The team now need to further test this natural product to improve the olfactory glia transplant therapy.

The aim of the project is to enhance the activity of the olfactory glia to improve their therapeutic use for the treatment of the injured spinal cord. The project will:

  • determine how the natural products enhance the activity of the olfactory glia
  • identify alternative natural products that further improve the activity of the cells
  • test the natural products with transplanted olfactory glia in spinal cord injury models

Results so far have found that curcumin’s activity is specific to olfactory glia. A similar type

of glia, called Schwann cells, which are found in peripheral nerves are not stimulated in the same way as olfactory glia. This means that olfactory glia have properties that are unique and not shared by other glia which reinforces the reason for using olfactory glia for spinal cord repair.

The project has also discovered that the natural products, linckosides, can stimulate olfactory glia to produce more cell connections which would be useful for making new connections within the injury site. Thus it is clear that natural products can stimulate olfactory glia.

The project is now moving into the phase of large scale screening of natural products. The use of robotics and automated analysis means that the team can now screen hundreds of natural compounds each day. Griffith University holds several hundred thousand natural compounds within the facility Compounds Australia and so it is expected than many more natural compounds that can positively promote neural regeneration will be discovered during this project.

The project has also developed new methods to grow cells in three-dimensions. By growing cells in 3D, the cells make stable connections which means they will survive transplantation better and therefore be able to be more effective in repairing the injury site. It also enables the research team to perform their laboratory experiments on the cells which are more like their natural 3D interactions in the body.

Interested in helping to raise funds

There are many ways you can help

Newsletter Signup

Heading

Sub heading here

[FORM_HERE]
TOP POPUP CONTENT HERE...
LEFT POPUP CONTENT HERE...
BOTTOM POPUP CONTENT HERE...
Perry Cross Logo

Spinal Injury Project Research

Perry Cross Logo

LIVINWell Free Online Webinar

Register to receive your free gift
Perry Cross Logo Blk@2x

Leave a Gift in Your Will

A legacy gift to the Perry Cross Spinal Research Foundation will help us continue the journey to discover a cure for paralysis and its many complexities.

You can help people across the world to walk again. We can’t thank you enough for considering us.

Please contact us on
0457 277 579 for a confidential discussion.